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Abstract—Variational inference (VI) is an effective determin-
istic method for approximate posterior inference, which arises in
many practical applications. However, it typically suffers from
non-convexity issues. This paper proposes a novel optimization
tool called asymptotically-annealed variational inference (AVI),
for better local optimal convergence of VI by using ideas
from small-variance asymptotics to efficiently search for better
solutions. The algorithm entails a simple modification to the
basic VI algorithm, has little additional computational cost and
is very simple. Furthermore, our algorithm can be viewed as
an asymptotic limit of simulated annealing, connecting it to a
recent literature in machine learning on deterministic versions
of stochastic algorithms. Experiments show better convergence
performance than VI and other annealing methods for models
such as LDA and the HMM, as well as on stochastic variational
inference problems for big data.

Index Terms—Variational inference, simulated annealing,
small variance asymptotics, big data.

I. INTRODUCTION

The rapid growth of data is one of the big challenges faced
by the contemporary machine learning. Scalable inference
makes many applications in fields such as genetics, finance,
and recommender systems possible. To avoid overfitting,
Bayesian methods for machine learning can produce better
models through a probabilistic framework that treats model
parameters as random variables [1]. This advantage, however,
is often faced by an intractable posterior computation.

There is a large literature on approximating posterior dis-
tributions of a model. The traditional method is Markov
chain Monte Carlo (MCMC) which obtains samples from an
approximation to the true posterior distribution by simulating
a Markov chain [2]. While strong convergence results are
available for such algorithms, scalability is often an issue.
As an alternative, variational inference treats posterior infer-
ence as an optimization problem over distribution parameters
[1]. Variational methods have been successfully applied in
many settings including communication systems; for example
multiple-access channels, multi-user detection, and OFDM
systems [3]–[6]. Importantly, this approach results in much
faster algorithms, which can be scaled to very large datasets
using stochastic optimization [7]. However, as shown by [8],
such algorithms are usually highly non-convex even for a
small number of parameters. Modern applications are typically
high-dimensional and contain many parameters, which makes
local optima a major obstacle in inference.

Escaping bad local optima for non-convex optimization
problems is a long-standing problem. Popular methods for
addressing this issue are convex relaxations [8], swarm in-
telligence techniques such as particle swarm optimization
[9], and simulated annealing [10]. However, not all of these
techniques are equally effective for variational inference,
considering scalability. In this context, deterministic annealing
for variational inference has been particularly useful [11],
[12]. The basic idea here is that, by scaling up the entropy term
in the objective function, some local optima can be smoothed
out for better convergence. The recently proposed variational
tempering [13] extends this idea to stochastic variational
inference (SVI) [7].

While having clear practical benefits, deterministic anneal-
ing comes with some drawbacks. First, this algorithm is un-
aware of the variational landscape in the sense that at each step
the parameters are updated without relating the previous and
current parameter values. Consequently, the choice of cooling
schedule (i.e. the factor we use to dampen the objective
function) becomes crucial and oftentimes the chosen cooling
schedule can be inappropriate. Automatic temperature selec-
tion is proposed by [13], but this significantly increases the
computational cost. On the other hand, the quantum annealing
framework [14] uses different states that are linked through the
variational E-step, also with increased computation. Another
common drawback of these approaches is that they all require
a re-derivation of the variational inference algorithm for each
new model, which can hinder their automation and widespread
use.

For these reasons, it is useful to develop an optimization
technique which can be integrated into the variational in-
ference procedure with minimal modification and negligible
cost. One possible candidate is simulated annealing, but like
MCMC this approach has drawbacks as it incurs significant
computational cost [2]. In this paper we propose an asymptotic
version of simulated annealing for variational inference (AVI)
which is guaranteed to improve the variational objective at
each step, or leave it unchanged. Our method is very simple
and comes with negligible additional cost, and does not re-
quire as many iterations as simulated annealing. As discussed
in the sequel, the asymptotic nature makes AVI similar in spirit
to other small-variance asymptotic methods. Our experiments
show significant performance gain over traditional anneal-



ing methods on Latent Dirichlet Allocation (LDA), Hidden
Markov Model (HMM) and Stochastic Variational Inference
(SVI).

We start with a brief discussion on variational inference in
the next section. In Section III we both review the previous
work on annealing and introduce our method. Section IV
illustrates the benefits of the proposed method using a simple
example. Finally, extensive experiments in Section V show
the effectiveness of our method on real datasets.

II. VARIATIONAL INFERENCE

Given data X , parameters Θ = {θi} for a model p(X|Θ),
and prior p(Θ), the goal of Bayesian inference is to compute
the posterior distribution p(Θ|X). This is usually intractable,
often leading to approximation using mean-field variational
inference [8]. In this approach, parameters of a factorized
q-distribution, q(Θ) =

∏
i q(θi), are tuned to minimize the

Kullback-Leibler divergence

KL(q||p) =

∫
q(Θ) ln

q(Θ)

p(X|Θ)
dΘ. (1)

Since this objective function cannot be obtained in closed form
we instead maximize the surrogate evidence lower bound,

L = Eq[ln p(X,Θ)] + H[q(Θ)], (2)

where H is the entropy function. For conjugate exponential
family (CEF) models, optimization is often done over the
natural parameters of each q-distribution, which we denote
as λ = {λi}.

A standard way to solve this is by gradient ascent

λt+1 ← λt + γtMt∇λL|λt , (3)

where γt is a step size and Mt is a preconditioning matrix. In
practice this is usually done using coordinate ascent for each
λi separately, holding the others fixed. For CEF models, the
gradient comes in a simplified form,

∇λiL = −
(
d2 ln q(θi)

dλidλTi

)
(Eq[t] + λ0i − λi). (4)

The vector Eq[t] is the expected sufficient statistics with
respect to all q other than q(θi) and λ0i is the prior. By setting
γt = 1 and Mt to the inverse Fisher information of q(θi), the
natural gradient results in the optimal coordinate update

λi ← Eq[t] + λ0i. (5)

While this is the optimal coordinate update for λi, iterating
this coordinate ascent method over variables i will only
converge to a local optimal solution. It has previously been
noted that annealing can improve this local optimum, which
we review below, along with our proposed annealing method.

III. ANNEALING AND AVI

A. Deterministic Annealing

Before developing our method we briefly review determin-
istic annealing [11] which has been an effective technique
for variational inference. The main idea here is to anneal
the distribution by scaling the entropy term in the evidence
lower bound. This encourages smoother distributions that have
higher entropy and can help reduce the large number of
modes. The modified, iteration-dependent objective is

Lt = Eq[ln p(X,Θ)] + TtH[q(Θ)]. (6)

Here Tt is the temperature variable which decays as the
iterations increase. Therefore, in the early iterations the impact
of the entropy is strong, and transitions to standard variational
inference as Tt → 1.

Taking the derivative of the lower bound with respect to
λi and taking the natural gradient as before gives the optimal
update

λi ←
1

Tt
(Eq[t] + λ0i). (7)

As is evident, deterministic annealing down-weights the
amount of information in the posterior, thus increasing the
entropy, but the modification is still determined by the data.

B. Simulated annealing

Our proposed method is based on simulating random per-
turbations of the deterministic variational updates, and is
therefore a simulated annealing-type method. In the context
of variational inference for a CEF model, the main idea of
simulated annealing is to update the natural parameters as

λ′t+1 ← λt + γtMt∇λL|λt + Ttεt , (8)

where εt is a random noise vector controlled by the tempera-
ture variable Tt ≥ 0. Here Tt → 0 as t→∞. These updates
are accepted according to the probability

Pr(λt+1 = λ′t+1) = min
[
1, exp

{
−L(λt)−L(λ′

t+1)

Tt

}]
. (9)

Otherwise λt+1 = λt. In the early stages, λt is volatile
enough to escape shallow optima. As the temperature Tt
decreases (at an appropriate rate), this algorithm mimics the
standard variational inference updates and converges. Again,
this is usually performed separately over each λi.

Historically, noise enhancement was observed in physical
systems [15] and simulated annealing was first used for
discrete variables [10], [16], [17]. This was later extended to
continuous random variables and analyzed in the context of
continuous-time processes [18]. In [18] and [19] the authors
showed that under certain conditions simulated annealing
weakly converges to the global optimum of L as T → 0 and
t→∞, which gives theoretical justification for using this kind
of algorithm. In [20] and [21], [22], discrete-time versions of
this was developed that have the same convergence property.
These ideas also found applications in the machine learning
domain, such as Hamiltonian Monte Carlo [23], importance
sampling [24], and stochastic gradient Langevin dynamics



(SGLD) [25], [26], where the temperature Tt is decreasing
at a slower rate.

While simulated annealing is a popular choice for many
optimization problems [2], it is not as well-suited for varia-
tional inference as used in machine learning. This is because
variational inference is typically only run for a small number
of iterations - contrary to MCMC - where the benefit of
simulated annealing may not manifest itself. Furthermore,
since the algorithm takes random steps there is no guarantee
that we are improving the variational objective at every step.
We argue that an algorithm should have such improvement
guarantees when run for so few iterations.

C. Annealing with AVI
We derive our very simple annealing approach as a modi-

fication of simulated annealing. Using coordinate ascent in(8)
over individual λi, we choose the values

Mi = −
(
d2 ln q(θi)

dλidλTi

)−1
,

Tt = ε, γt = 1, εt =
ρt
ε

(ηt,i − Eq[t]− λ0). (10)

We set ρt to be a step size that is shrinking to zero as
t increases and discuss the random vector ηt,i and ε ∈ R+

shortly. The proposed update is therefore

λ′i ← (1− ρt)(Eq[t] + λ0i) + ρtηt,i. (11)

With respect to (7), note that 1
Tt
⇔ 1 − ρt; this first term

therefore is similar to deterministic annealing. The second
injects noise to further search the objective space. We propose
and use a staircase cooling schedule for ρt, where ρt is kept
constant for a fixed number of steps and then decreased in
value. The value of ρt and the time window can be regarded as
search radius and search duration, respectively. After a certain
iteration I , ρt = 0 for t > I .

To determine whether we accept or reject λ′i, we propose
the simple strategy

accept λ′i if L(λ′i) > L(λ(old)
i ). (12)

Algorithm 1 Asymptotically-annealed VI (AVI)
1: For CEF models where updates are in closed form.
2: Randomly initialize parameters: λ0i for q(θi).
3: Obtain initial configuration:

[λold
i , Lold] ← VI(λ0i).

4: for each q(θi) in iteration t do
5: Set ρt according to staircase cooling.
6: Generate noise ηt,i for λi.
7: Generate proposal: λpi ← (1− ρt)λold

i + ρtηt,i.
8: Update: [λnew

i , Lnew] ← VI(λpi )
9: if Lnew > Lold

10: λold
i ← λnew

i and Lold ← Lnew

11: end if
12: end for
13: Note: [λ(t+1) , L(t+1)] ← VI(λ(t)) reads in the current variational

parameters, updates them and computes the lower bound for the new
parameter setting.

Unlike simulated annealing, which assumes that many itera-
tions will be done to fully explore the parameter space, this
algorithm simply accepts if there’s improvement or rejects
otherwise. It is therefore guaranteed to monotonically improve
the lower bound. Since we set ρt = 0 for t > I , convergence
follows by standard rules [8]. As for ηt,i any random variable
that is in the parameter’s support set can be used. We
summarize the algorithm in Algorithm 1. Finally, note that
in the pseudocode the injected noise is written in the form
of convex combination due to our derivation; but practically
noise can be added in any desired way.

a) Asymptotic connections: We can connect our pro-
posed AVI technique to an asymptotic limit of simulated
annealing. In particular, we notice that, as formulated in (10),
in the limit as ε → 0 the setting of λ′i in (11) remains
unchanged because ε cancels in the product Ttεt. However, if
we then accept/reject according to the simulated annealing
procedure in (9), the probability of accepting is 0 or 1,
depending on whether the new value improves the objective
function. This is similar in spirit to small variance asymptotic
approaches that have been derived for a variety of Bayesian
models [27]–[29]. There, the motivation is partly to avoid
having to run many iterations using a sampling algorithm;
for example, models such as DP-mixtures can reduce to
“nonparametric K-means” that are much faster to compute.
Our proposed AVI has a similar advantage of requiring far
fewer iterations than standard simulated annealing approaches,
while still having annealing properties.

b) Relation to previous annealing work: We have previ-
ously discussed how this method can be thought of as building
on deterministic simulated annealing. Comparing lower bound
values corresponds to interacting states which is inspired by
quantum annealing [14], but our strategy is to work with the
M-step while quantum annealing concentrates on the E-step.
Our usage of a staircase cooling is motivated by the analysis
of [13]. Interestingly, when applied to SVI this algorithm can
be regarded as a reversal of the SGLD method [25]; in SGLD,
the gradient dominates at first and the injected noise dominates
later, while the proposed method does the reverse.

IV. AN ILLUSTRATIVE EXAMPLE

We demonstrate our annealing approach over a commonly
evaluated test model [11], [13]. In this model, the data is
generated from a mixture of two one-dimensional Gaussians
with means µ1, µ2, a shared standard deviation of σ, and
cluster mixing vector α. We place a normal prior over the
unknown means µk. Defining a factorized q(µk) = N(µ̂k, σ̂

2
k)

for k = 1, 2, the variational updates are

φ̂ik =
αk exp{− 1

2σ2 (xi − µ̂k)2 − 1
2

σ̂2
k
σ2 }∑

j αj exp{−
1

2σ2 (xi − µ̂j)2 − 1
2

σ̂2
j

σ2 }
(13)

µ̂k =
σ2
(∑

i φ̂
k
i

)
1 + σ2

(∑
i φ̂
k
i

)(∑i φ̂
k
i xi∑

i φ̂
k
i

)
, (14)

σ̂2
k =

σ2

1 + σ2
(∑

i φ̂
k
i

) (15)



In our annealing approach, we update µ̂k by first forming
the update above, µ̂′k, and averaging with a random initializa-
tion, η, for µ̂k such that µ̂k ← (1 − ρ)µ̂′k + ρη (omitting
iteration subscripts). We note that this is in contrast with
deterministic annealing, which inflates σ̂2

k and φ̂ik and leaves
µ̂k untouched. We synthesize data using identical settings as
in [11]. We plot the objective function restricted to the mean
parameters of each q distribution in Figure 1.

In Figure 2, we compare variational inference (VI) with
deterministic annealing (DAVI), simulated annealing (SAVI),
and the proposed AVI. We use 250,000 initializations along a
uniform grid. The plots show the probability of global optimal
convergence as a function of starting point (blue = 0 and red =
1). (We use kernel smoothing to make these plots for SAVI and
AVI. For VI and DAVI we simply show the binary values as
these approaches are deterministic.) We also show the overall
success probability above each plot. For DAVI we use the
cooling schedule of [11]. AVI and SAVI use the same cooling
scales and both stochastic annealing algorithms start from the
same temperature; making them directly comparable. We set
these schedules to all have the same search radius so that
comparison with DAVI is also meaningful.

We notice that DAVI and VI have linear boundaries, being
deterministic, while the stochasticity of AVI and SAVI allow
for probabilities to wrap into the local optimal region. While
stretching out SAVI over many more iterations and with a
slower cooling schedule produced better results, this removes
the speed advantage of VI over MCMC inference—for the
large number of iterations required for SAVI to theoretically
work well, we argue that AVI is preferable. These results
show that our asymptotic approach to simulated annealing has
advantages. We also observe that, for the same “amount” of
cooling, AVI can achieve better convergence than DAVI.

V. EXPERIMENTS

In this section we perform a number of experiments to
compare AVI with other methods. For batch variational infer-
ence we evaluate using two models: Latent Dirichlet allocation
(LDA) [30] and the discrete hidden Markov model (HMM)
[31]. We compare our method to deterministic annealing
(DAVI) and simulated annealing (SAVI). We also test our
algorithm in the stochastic inference setting, comparing it to
the recently proposed variational tempering (VT) [13].

A. Latent Dirichlet Allocation

We begin our comparisons with LDA. We consider the three
corpora indicated in Table I. The model variables for a K-
topic LDA model are {β1:K , π1:D, cd} where D is the number
of documents. The vector πd gives a distribution on topics in
the set β for document d. Each topic βk is a distribution on
V vocabulary words. The vector cd indicates the allocation
of each word in document d to a topic.

We use a mean-field posterior approximation

q(β,π, c) =
[∏

k q(βk)
][∏

d q(πd)
][∏

d,n q(cd,n)
]
.
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Fig. 1. Contoured heatmap of the variational objective function used in our
toy experiment showing the two optima.
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Fig. 2. Heatmaps showing the probability of converging to the global
optimum given the starting point; red = 1 and blue = 0. Results are shown
for variational inference (VI), deterministic annealing (DAVI), simulated
annealing (SAVI) and asymptotic simulated annealing (AVI). Also shown
is the overall probability of converging to a global optimum given a starting
point picked uniformly at random.

Here q distributions on βk and πd are Dirichlet and cd,n are
multinomial. We set the Dirichlet prior parameter of πd to
1/K and the Dirichlet prior parameter of βk to 100/V and
initialize all Dirichlet q distributions from a scaled uniform
Dirichlet random vector.

When no annealing is present, variational parameter update
corresponds to summing expected counts over all words and
documents. The updates for β and π have similar structures.
Focusing on topic vectors, the update for the variational
parameter λk of βk is

λk =
∑
d,n φd,n(k)wd,n + λ0 . (16)

Here the variables φd,n denote the allocation probability vec-
tor across topics of nth word in dth document. The indicator
vector wd,n (the data) corresponds to this word value.



5 10 15 20 25 30 35 40
−1.9

−1.88

−1.86

−1.84

−1.82

−1.8

−1.78

−1.76
x 106

AVI

(a) arXiv

5 10 15 20 25 30 35 40
−7.3

−7.25

−7.2

−7.15

−7.1

−7.05

−7
x 106

(b) Huffington Post

5 10 15 20 25 30 35 40
−9.3

−9.25

−9.2

−9.15

−9.1

−9.05
x 106

(c) New York Times

Fig. 3. Comparison of the variational objective as a function of topics for three different algorithms: standard variational inference without annealing (VI),
deterministic annealing (DAVI), simulated annealing (SAVI) and AVI. We see that in all cases AVI clearly outperforms the others algorithms. We also observe
that annealing can provide more accurate information for model selection over the number of topics.

As shown in Section III, AVI is applied without modifying
the collecting of these statistics. We just pick a suitable
noise distribution to simulate the Markov chain. To update
the topics β we choose a scaled Dirichlet noise vector,
ηi ∼ Dir(1, . . . , 1), and obtain a proposal of the form

λpk = (1− ρ)(
∑
d,n φd,n(k)wd,n + λ0) + ργηk, (17)

where again we suppress iteration number. We use γ to scale
the probability vector ηk, which ensures the noise is not too
weak.

The remaining simulation set-up is as follows: Deter-
ministic and simulated annealing uses the cooling schedule
Tt = 1 + 2× 0.7t. These values give significant improvement
over the baseline variational inference algorithm and was
found to give good representative results compared with
other strategies. For AVI we set ρ0 = 0.3 and follow a
staircase cooling where ρt ∈ {0.3, 0.2, 0.1}. This way the
temperature ranges of all algorithms are matched and we get
fair comparison. All algorithms use 100 iterations and for
DAVI/SAVI/AVI we turn off modifications after 75 steps. This
ensured the convergence of parameters to their final values.
We use these settings for all LDA experiments.

In Figure 3 we show plots of the final value of the
variational objective as a function of K averaged over multiple
runs. Firstly we notice that there is a clear benefit of employ-
ing annealing in general. AVI, in turn, is capable of improving
the lower bound quite significantly and consistently for all
experiments. Annealing also helps with model selection, i.e.

TABLE I
STATISTICS OF THE THREE CORPORA USED IN OUR ANNEALING

EXPERIMENTS FOR LDA.

ArXiv HuffPost NYT

# docs 3.8K 4K 8.4K
# vocab 5K 6.3K 3.0K
# tokens 234K 906K 1.2M
# word/doc 62 226 143

finding a good value for K. For most of the cases VI simply
gives a decreasing lower bound which is not very informative.
AVI gives the best lower bound values and we see that in most
cases its optimal K value disagrees with DAVI/SAVI.

The fact that AVI performs significantly better than SAVI
shows the two algorithms are quite different in nature. For this
and other models we tried, DAVI works better than SAVI as
well when both are restricted to a small number of iterations
and for this reason simulated annealing has not found much
use in variational inference applications. In high dimensional
problems such as LDA the traditional simulated annealing
would naturally require a large number of iterations to give
good results. We therefore think this experiment shows the
significant advantage of AVI in settings where the number
of iterations is restricted to be small. In Table II we show
the probability of accepting the proposal (i.e., improving the
variational objective) after adding noise. We see that most
of the proposals are accepted because the information from
the data in the update provides enough improvement that the
random noise does not take the parameter to a worse location
in the space.

B. Hidden Markov Model

Next, we consider the discrete hidden Markov model with
K-states. Similar to LDA, this model has proved useful for
many applications [32]. Here we present our method on a
character trajectories dataset from the UCI Machine Learning
Repository, which consists of sequences of spatial locations
of a pen as it is used to write one of 20 different characters. In

TABLE II
ACCEPTANCE PROBABILITY FOR AVI AT EACH STAIRCASE LEVEL FOR

ARXIV. AVERAGED OVER TEN RUNS.

#topics ρ = 0.3 ρ = 0.2 ρ = 0.1

15 1 0.97 0.90
20 1 0.99 0.88
25 1 0.99 0.92
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Fig. 4. Box plots for variational objective function (×104) for each character.The color codes are blue/VI, black/DAVI, and red/AVI. Our algorithm consistently
gives the best improvements and for most of the characters, the improvement margin is large.

this dataset, there are 2,858 sequences in total from which we
hold out 200 for testing (ten for each character). We quantized
the 3-dimensional sequences using a codebook of size 500
learned using K-means.

For this model the model variables are {π,A,B}, with
hidden state sequences sn for each observed sequence. The
variable π is an initial state distribution, A is the Markov
transition matrix and B gives the emission probabilities over
a discrete set. K is the number of hidden states. Once again
we consider a mean-field factorization of form

q(π,A,B, s) = q(π)
∏K
k=1 q(Ak,:)q(Bk,:)

∏
n q(sn)

where the individual factors on π, A and B are Dirichlet and a
discrete distribution on each sequence sn. For the priors on A
and π we set the Dirichlet parameter to 1/K. For the priors
on B we set the Dirichlet parameter to 10/V , where V is
codebook size. As with LDA, we initialize all q distributions
by scaling up a uniform Dirichlet random vector.

Also similar to LDA, the variational updates for the factors
have the general form [31]

λk =
∑
n

∑
m φ

nm
k + λ0, (18)

where λ0 is a prior and φnmk is a probability relating to the
mth emission in sequence n and state k. Similar to previous
section we modify this update to obtain the proposal

λpk = (1− ρ)(
∑
n

∑
m φ

nm
k + λ0) + ργηk, (19)

where we used additive scaled Dirichlet noise. Again we
suppress iteration index t.

Figure 4 shows box plots of variational lower bound for
a 5-state and 10-state HMM, where we compare with vari-
ational inference and deterministic annealing. We see that
AVI provides a major improvement over VI and DAVI.1

The improvement provided by DAVI is not significant for

1SAVI results are not better than DAVI and are omitted to reduce clutter
in figures.
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Fig. 5. Bar charts of variational objective function for arXiv and big
NYT datasets. Our algorithm improves significantly upon the state-of-the-
art variational tempering technique.

a number of cases. As is clear, AVI provides a significant
improvement over deterministic annealing, which only de-
forms the objective landscape, but does not explore over the
variational parameter space. While AVI deforms the landscape
in a similar way by pre-multiplying the updates by (1 − ρ),
the additional exploration provided by the stochastic part ηk
is seen to be a significant advantage.

C. Stochastic Variational Inference

Our last experiment uses stochastic variational inference,
which allows for fast variational inference over very large
datasets [7]. This method randomly subsamples mini-batches
to obtain unbiased estimates of the gradients, and partially
updates the global variables using convex combinations con-
trolled by a step size. Unlike the previous settings we con-
sidered, here the full objective function we are optimizing
is unavailable as it requires computing a lower bound over
a large collection of samples, which would compromise
the scalability provided by stochastic gradients. Therefore
convergence is typically monitored over a small independent
validation set, which we also adopt.

We apply the AVI to the SVI updates and use the validation
set lower bound for comparisons. AVI does not introduce
additional complexity to the SVI framework, since the updates



are simply weighted averages of the true updates with random
noise. We apply AVI only to the global variable in this case.
We again use LDA as the model, applying it to a New York
Times corpus containing roughly 1.8 million documents and
the small arXiv dataset shown in Table I. The update and
proposal parameters are similar to Eqs. (16) and (17).

We compare our method to variational tempering (VT) [13]
which is a state-of-the-art method that generalizes determin-
istic annealing to SVI; in particular we use local variational
tempering as it gives good results on LDA. The remaining
simulation settings are as follows: For arXiv we hold out 358
documents on which we evaluate the variational objective. We
set the number of topics to K = 50 and batch size to B = 100.
The step size as a function of iteration is set to (50 + t)−0.51.
VT and AVI are activated for the first 300 iterations following
a staircase cooling schedule, and then are turned off to ensure
convergence. For the large New York Times corpus we hold
out 625 documents to evaluate the variational objective, set
K = 50, B = 500, and use the same cooling as in arXiv.

Figure 5 shows the variational objective averaged over
multiple runs (error bars were very small so are omitted).
For both cases AVI yields a clear improvement over VT, just
as VT clearly improves the base SVI algorithm. In addition,
it requires less computation since VT infers an additional
M -dimensional latent temperature variable per data point.
Therefore we gain better performance for less computation.

VI. CONCLUSION

We have introduced a simple yet effective annealing tech-
nique for variational inference, which we call asymptotic
simulated annealing. We showed how this technique can be
built into the existing variational inference procedure with
minimal modification, making it easy to use for practitioners.
We demonstrated the benefits of this algorithm on highly
non-convex problems, such as LDA and the HMM. We also
showed the effectiveness on stochastic variational inference,
improving the state-of-the-art variational tempering, an exten-
sion of deterministic annealing to SVI.
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