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Abstract

We introduce Markov latent feature models
(MLFM), a sparse latent feature model that arises
naturally from a simple sequential construction.
The key idea is to interpret each state of a se-
quential process as corresponding to a latent fea-
ture, and the set of states visited between two
null-state visits as picking out features for an
observation. We show that, given some natural
constraints, we can represent this stochastic pro-
cess as a mixture of recurrent Markov chains. In
this way we can perform correlated latent fea-
ture modeling for the sparse coding problem. We
demonstrate two cases in which we define fi-
nite and infinite latent feature models constructed
from first-order Markov chains, and derive their
associated scalable inference algorithms. We
show empirical results on a genome analysis task
and an image denoising task.

1. Introduction
Latent feature models learn the unobserved factors that are
shared among a collection of objects. Often a small fraction
of these latent features can be used to jointly describe, or
“sparsely code,” a single object. This assumption is often
made for a wide range of tasks (Ghahramani et al., 2007).
For example, each DNA sequence can be assigned features
that measure repeating patterns of certain base pairs, or
each image can be assigned features that correspond to the
items it contains.

The process for making latent feature assignments can be
thought of as generating a 0-1 matrix where the 1-elements
in each row index the latent features assigned to the object.
For example, the Indian buffet process (IBP) (Griffiths &
Ghahramani, 2011) defines a feature allocation whereby
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features are independently assigned according to a rich-
get-richer scheme. The IBP is a Bayesian nonparametric
model in which the number of latent features can grow to
infinity with data. It also assumes exchangeability among
objects, meaning the order of the data does not affect the
feature assignment probabilities. With such assumptions
there always exists a mixing measure (de Finetti’s mea-
sure) by which feature allocation scheme for different ob-
jects are conditionally independent. For example, the mix-
ing measure for the IBP is the beta process (Thibaux &
Jordan, 2007). Employing such representations allows for
simple variational inference algorithms that can easily scale
to large data sets (Hoffman et al., 2013; Sertoglu & Paisley,
2015; Shah et al., 2015).

Models based on the IBP and beta process assume inde-
pendence among the latent features allocated to an object,
but in many cases these latent features may have depen-
dencies. For example, in a natural image a car is more
likely to co-occur with a bus rather than a whale. Several
methods have been developed for modeling dependencies
among latent features or clusters. For example, beta dif-
fusion trees (Heaukulani et al., 2014) organize latent fea-
tures in a tree to learn a multi-resolution feature structure.
Other tree models, such as the nested Chinese restaurant
processes (Blei et al., 2010) and the nested hierarchical
Dirichlet processes (Paisley et al., 2015), use a discrete-
path based tree structure to select latent features for each
object. To avoid the rigid structure of trees in a mixed-
membership framework, Markov mixed-membership mod-
els (Zhang & Paisley, 2015) propose instead modeling the
pair-wise correlation of latent clusters with a Markov ran-
dom walk on a fully-connected, finite graph.

We propose a Markov latent feature model (MLFM), which
extends the idea of using Markov random walks to latent
factor modeling problems such as those addressed by the
IBP and beta process. The main novelty in this new frame-
work is that we use a sequential block—a subsequence be-
tween two adjacent visits to a “null state”—to define the
feature allocation process (Section 2). Since only a subset
of states will be visited prior to returning to the null state,
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Figure 1. An illustration of the construction of a 0-1 matrix from
a sequential process, which we define to be a mixture of recur-
rent Markov chains. On the LHS, the chain Z starts from a null
state Z0 = 0 and generates four blocks (subsequences) Zψ(1) to
Zψ(4) by returning to 0 four times (shown as four colored paths
on the graph). One the RHS, this sequence constructs a 0-1 matrix
with four rows and the columns indicating the unique set of states
visited in each block.

a MLFM is a sparse coding model. We introduce two scal-
able MLFM models, a parametric and nonparametric ver-
sion, for which we directly define the mixing measure of
the associated recurrent Markov chain (Section 3). This al-
lows us to derive a scalable variational inference algorithm
(Section 4). Finally, we apply MLFM to a genome analysis
task and an image denoising task to show its effectiveness
(Section 5).

2. Feature Allocation via Sequences
Before describing the specific generative processes we use,
we discuss the central property of the proposed Markov la-
tent feature model (MLFM) that distinguishes it from other
approaches to sparse coding. Let Z = (Z0, Z1, · · · ) be an
infinitely long stochastic process, where each Zi ∈ N∪{0}
and Z0 = 0, with 0 indexing the “null state”. As we shall
see, the null state plays the role of partitioning latent fea-
tures for different objects, while N is a feature index set.

The generative process we define sequentially pick features
for an object until the process returns to 0. Let τ(0) = 0 be
the index of the initial null state and

τ(1) = min{n > τ(0) : Zn = 0}. (1)

The sequence through Zτ(1) selects the features assigned
to the first object as the unique set of states visited between
Zτ(0) and Zτ(1). We call τ(1) the first return time and de-
fineψ(1) to be the sequence (τ(0)+1, . . . , τ(1)). Therefore
Zψ(1) is the first block of the process Z and corresponds to
the features allocated to the first observation.

We continue this procedure through a second return time
τ(2), constructing the second subsequence Zψ(2) from
which we obtain the set of latent features assigned to the
second observation. More generally, if we haveN observa-

tions, then we read the stochastic process until step τ(N),
the time we finish selecting features for the last object.

We can use this set of blocks to construct a 0-1 matrix Ẑ,
where each row indicates the features associated with the
corresponding observation similar to the IBP. We show an
example for N = 4 in Figure 1.

Thus far we have not defined the distribution of Z. How-
ever, we choose to make the following two restrictions:

1. The null state should be visited infinitely many times.

2. The rows of Ẑ should be exchangeable.

The first restriction allows us to model an infinite number
of observations and is a statement about the recurrency of
Z. The second restriction is made to allow for simple infer-
ence using a mixing measure. Our added goal of modeling
feature correlations leads us to enforce the second restric-
tion via Markov exchangeability. Recall that a sequence Z
is Markov exchangeable if the probability of two sequences
Z′ and Z′′ is the same when they share a permuted collec-
tion of subsequences. In the context of Figure 1, this simply
states that the probability of Z is the same according to the
chosen distribution if we permute a finite number of Zψ(i).
The following lemma is a direct result of these definitions.

Lemma 1. The rows of Ẑ are exchangeable if Z is Markov
exchangeable.

Theorem 1. (Diaconis & Freedman, 1980) A recurrent
process Z is Markov exchangeable if and only if it is a mix-
ture of Markov chains.

We therefore specify Z as a mixture of recurrent Markov
chains. As a result, the latent features are correlated, which
can be viewed as a graph where the edges indicate Markov
transitions among states (see Figure 1). We observe that
models such as the IBP satisfy the above requirements, but
without modeling correlations. Using the Markov prop-
erty provides this modeling capacity in a way that allows
for simple inference and has straightforward nonparamet-
ric extensions.

3. Markov Latent Feature Models
In Section 2 we proposed restricting Z to be a mixture of re-
current Markov chains. In principle, any formulation based
on this restriction would be valid, including those whose
mixing measure is unknown, but for practical purposes we
would like to explicitly model the mixing measure of the
recurrent Markov chain. We therefore propose two models
below, one parametric and one nonparametric, both based
on a simple first-order Markov assumption.
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3.1. A parametric model

Assume we have N observations and have K + 1 possible
states (including the null state). We can formulate Z as

p(Z1:τ(N)|Z0) =

∫ τ(N)−1∏
j=0

p(Zj+1|Zj , θθθ)µ(dθθθ), (2)

where p(Zj+1|Zj , θθθ) = θZj ,Zj+1
. We let the mixing mea-

sure µ be a prior on the Markov transition matrix θθθ. In
particular, we let the vector θθθk = (θθθk,0, . . . , θθθk,K) be dis-
tributed as

θθθk ∼ Dir
(

α
K+1 , · · · ,

α
K+1

)
, 0 ≤ k ≤ K. (3)

Notice that together with the null state we haveK+1 states;
we do not separate the null state from the other states, but
jointly model them together.

We call this model the finite Markov latent feature model
(MLFM in our experiments). When the expected return
time to the null state is much smaller than K, MLFM will
be a sparse coding model in that each observation will
possess a small subset of features. Unlike models based on
the beta process, in which the number of features for each
observation follows a Poisson distribution, the distribution
on the number of features in MLFM cannot be derived in
closed-form. However, this distribution is connected to the
stationary distribution of the process. We next present a
bound on the expected number of features.

Proposition 1. Suppose θθθ is known and ∆ is its stationary
distribution. Let Ai be the set of unique features used by
object i, then E[|Ai|] ≤ 1

∆0
, where ∆0 corresponds to the

null state.

Proof. First observe that |Ai| ≤ τ(i)−τ(i−1) because the
sequence may return to the same feature multiple times. By
the Markov exchangeablity of Z, we have |Ai| =d |A1| and
τ(i)−τ(i−1) =d τ(1). Since θk,k′ > 0, the Markov chain
is regular and thus ergodic. Since E[τ(1)] is the expected
return time for a regular Markov chain and E[τ(1)] = 1

∆0

(Norris, 1998), the result follows.

3.2. A nonparametric model

In our second example, we extend the above model to an
infinite number of features in the spirit of the IBP and
beta process. We use the hierarchical Dirichlet processes
(HDP) (Teh et al., 2006) to model the mixing measure θθθ:

βββ ∼ GEM(α), θθθk ∼ Dir(αβββ), (4)

where βk = vk
∏k−1
k′=0(1 − vk′) and vk′ ∼ Beta(1, α).

We call this model the infinite Markov latent feature model
(iMLFM in the experiments).

3.3. Application to a linear Gaussian model

We apply these models to the dictionary learning problem
using a linear Gaussian model. In this case, the data matrix
of N observations X = [X1, · · · ,XN ] is modeled as

X = W(Ẑ> ◦C) + εεε, (5)

where W = [w1, · · · ,wK ] is the dictionary matrix with
K elements, C is a K × N matrix, εεε = [ε1, · · · , εN ] is a
noise matrix, and

wk ∼ N (0, 1
η I), cki ∼ N (0, 1

λ ), εi ∼ N (0, σ2I).

As defined above, the coding matrix Ẑ is generated from
the Markov sequence Z described in Section 2 using the
priors on either the finite or infinite state Markov chain de-
fine above. In the infinite-state model, K =∞.

3.4. Discussion

The two examples of an MLFM given above are mod-
els that induce directed correlations among latent features.
However, they are not the only choice. From Theorem 1,
we can apply any mixture of recursive Markov chains to
build a model. Another choice would be to use an edge-
reinforced random walk (ERRW). An ERRW-induced la-
tent feature model is undirected. A class of ERRWs
has been shown to be a mixture of reversible Markov
chains, for which Bayesian inference has recently been
studied (Diaconis & Rolles, 2006; Bacallado et al., 2013).
However, constructing nonparametric priors for reversible
Markov chains is non-trivial. Knowles et al. (2014) pro-
vides one solution, but a scalable version has not yet been
developed.

Several previous works have studied the theoretical prop-
erties of other feature allocation constructions. For exam-
ple, Broderick et al. (2013) studied an exchangeable class
of feature partitions using a “paintbox” characterization,
while Heaukulani & Roy (2013) analyzed the combinato-
rial structure of beta negative binomial processes and Zhou
et al. (2015) investigate such constructions for feature count
matrices.

4. Inference
We derive a variational inference algorithm for the para-
metric Markov latent feature model where we model the
mixing measure as a Dirichlet distribution. We can ex-
tend inference to the nonparametric case by modeling βββ
in Equation (4) using, e.g., the direct assignment method
as mentioned in Liang et al. (2007); Johnson & Wilsky
(2014) for the HDP; another recent fully Bayesian method
is Zhang et al. (2016). We exclude this additional step in
our algorithm below since the derivation is identical to the
HDP in this portion of the model.
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Algorithm 1 Sparse coding with greedy search
Input: q(θθθ) and W.
for i = 1 to N do

1. Set Zψ(i) = ∅ and Ai = ∅.
while maxj ξj > 0 do

(a) Set ξj = LAi([Zψ(i), j, 0])− LAi([Zψ(i), 0]).
(b) Set j′ = arg maxj ξj .
(c) Set Zψ(i) ← [Zψ(i), j

′] and Ai ← Ai ∪ {j′}.
end while
Set Zψ(i) = [Zψ(i), 0].

end for

4.1. Batch Variational Inference

The joint distribution of the Markov latent feature model
factorizes as

p(θθθ,W,C,Z,X) =
[∏K

j=0 p(θθθj)p(wj)
]

×
[∏N

i=1 p(Ci)p(Zψ(i)|θθθ)p(Xi|Ci,Zψ(i),W)
]
.

We recall that Zψ(i) is the block of the Markov chain that
selects features for the ith observation and must terminate
at the null state. We restrict the posterior to a factorized
form as well,

q(θθθ,W,C,Z) =
[ K∏
j=1

q(θθθj)q(wj)
][ N∏

i=1

q(Ci)q(Zψ(i))
]
,

and we define

q(θθθj) = Dir(aj), q(wj) = δwj (·),
q(Ci) = N (µµµi,ΣΣΣi), q(Zψ(i)) = δZψ(i)

(·). (6)

The variational objective is

L = Eq[ln p(θθθ,W,C,Z,X)]− Eq[ln q(θθθ,W,C,Z)].

Using this factorization, we observe in advance that our
algorithm below is equivalent to a MAP-EM algorithm for
maximizing p(X,W,Z), where C and θθθ constitute the hid-
den data. This is because

q(θθθ,W,C,Z) = q(θθθ,C|W,Z)q(W,Z)

and θθθ and C are conditionally independent and can be
solved exactly given the point estimates W and Z, which
the delta q distribution enforces. In other words, the mean-
field representation for θθθ and C is exact and not an approx-
imation in this case.

Update Z and C: Sparse coding with greedy search.
We jointly update Zψ(i) and Ci using a new approach to
sparse coding with Bayesian models. The method is simi-
lar to orthogonal matching pursuits, used in sparse coding

by K-SVD (Aharon et al., 2006), in that it greedily selects
the next feature to add by integrating out the correspond-
ing weight, followed by an update of all weights on the
active features. The structure of the algorithm is also sim-
ilar to MAP-EM inference for mixtures of factor analyzers
(Ghahramani & Hinton, 1996).

To sparsely code the ith observation, we can focus on the
objective term

L(Zψ(i), q(Ci)) = Eq
[
ln
p(Xi,Ci,Zψ(i)|θθθ,W)

q(Ci)

]
. (7)

First observe that given Zψ(i),

q(Ci) = p(Ci|Xi,Zψ(i),W) = N (µµµi,ΣΣΣi) (8)

is known exactly and is a multivariate Gaussian derived ex-
plicitly below. Here, we jointly update Zψ(i) and q(Ci) by
incrementally extending (or terminating) the path Zψ(i).

Because our inference problem is equivalent to MAP-EM
for the joint likelihood p(X,W,Z) we can do this as fol-
lows: Let Ai be the current set of features selected by the
path Zψ(i) and q(CAi) = N (µµµAi ,ΣΣΣAi) be the correspond-
ing marginal posterior over these dimensions, where

ΣΣΣAi = (λI + 1
σ2W

>
AiWAi)

−1, µµµAi = 1
σ2ΣΣΣAiW

>
AiXi.

We expand the path of Zψ(i) using EM by constructing

LAi(Zψ(i)) = Eq[ln p(Xi,Zψ(i)|CAi ,W, θθθ)]

where the expectation is over θθθ and the subset of Ci in-
dexed by Ai using q(CAi) derived above. The remaining
dimensions of Ci are marginalized out a priori. Since we
are dealing with multivariate normal variables, all calcula-
tions are in closed form and remain Gaussian.

We then greedily pick the next state that improves this ob-
jective the most and add that state to the end of the path
Zψ(i), or we terminate if moving to the null state and
adding no more features provides the best improvement.
When the algorithm terminates, we have a point estimate
of the path Zψ(i) that selects the latent features for the ith
observation, and the corresponding conditional posterior q
distribution on the weight vector Ci. By the equivalent
MAP-EM construction of this algorithm, each step is guar-
anteed to increase the objective function. We summarize
this greedy algorithm in Algorithm 1.

Proposition 2. The sparse coding greedy search algorithm
will stop in a finite number of steps.

See the appendix for the proof. Furthermore, we observe in
our experiments that the algorithm tends to terminate after
a small fraction of available features have been selected,
using a number comparable to IBP-based models.
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Figure 2. (Left) Factors learned from BPFA, nCRP, and iMLFM on the HGDP-CEPH dataset. Observations from various regions are
aligned vertically, as displayed on the left side. (Right) Graph learned from iMLFM and nCRP.

Update q(θθθ): The distribution q(θθθj) = Dir(aj) can be
found by optimizing the Markov chain portion of the ob-
jective function below,

L(q(θθθ)) = Eq[ln p(θθθ)] +
∑N
i=1 Eq[ln p(Zψ(i)|θθθ)].

Since Zψ(i) is a point estimate, this is equivalent to finding
the conditional posterior of θθθj , and thus

aj,j′ =
α

K + 1
+

τ(N)−1∑
i=0

1(Zi = j, Zi+1 = j′).

Update W: For this point estimate, we want to maximize

L(W) = ln p(W) +
∑N
i=1 Eq[ln p(Xi|Ci, Ẑi,W)].

Let q(Ci) = N (µµµi,ΣΣΣi), and define Z̃i = diag(Ẑi). We
can differentiate with respect to W to find that

W =
[ N∑
i=1

Xiµµµ
>
i Z̃i

][
ησ2I +

N∑
i=1

Z̃i(µµµiµµµ
>
i + ΣΣΣi)Z̃i

]−1

.

4.2. Stochastic Variational Inference

We also derive a stochastic inference algorithm for large
scale learning. We give the corresponding modifications
for this algorithm in the appendix. The result is effectively
a stochastic EM algorithm that shares one update with SVI
(Hoffman et al., 2013) for learning q(θθθ) and uses stochastic
gradient directly on the dictionary W.

5. Experiments
We demonstrate the effectiveness of our MLFM framework
on two tasks. The first task is an analysis of the HGDP-
CEPH cell line panel dataset (Rosenberg et al., 2002) for
which we test batch learning performance of our two mod-
els. The second task is image denoising, where batch learn-
ing is slower and so we use stochastic inference.
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Figure 3. Average predictive result on HGDP-CEPH dataset.

5.1. HGDP-CEPH Cell Line Panel

For this small-scale experiment, we use a subset of 266 in-
dividuals across 11 countries from the HGDP-CEPH Hu-
man Genome Diversity Cell Line Panel (Rosenberg et al.,
2002)1. Each person is represented by their genotypes mea-
sured at D = 377 autosomal microsatellite loci.

We split this data into a set of 54 individuals for testing,
and use the rest for training. For evaluation we use average
predictive log-likelihood of the testing set, which we ap-
proximated using Monte Carlo integration over the q dis-
tributions. We experiment with MLFM letting K range
from 5 to 30 features, and iMLFM truncated to 100 latent
features. We compare with BPFA (Paisley & Carin, 2009)
and nested CRP (Blei et al., 2010), which we modified into
a linear Gaussian model. Both models were truncated to
100 latent features as well. We set hyper-parameters to be
η = 1, λ = 1, σ = 0.8. We ran each model 20 times and
averaged the results. All models converge by 100 global

1As reported in (Rosenberg et al., 2002), the remaining indi-
viduals form two large heterogeneous clusters which are hard to
distinguish in general.
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Table 1. PSNR | SSIM (average # features used per patch) on various images and noise settings.

BARBARA σ = 5 σ = 10 σ = 15 σ = 20 σ = 25
IMLFM 38.28 | 0.958 (3.58) 34.74 | 0.932 (2.17) 32.47 | 0.909 (1.59) 30.81 | 0.885 (1.31) 29.56 | 0.857 (1.16)
MLFM 37.82 | 0.953 (3.80) 34.55 | 0.930 (2.09) 32.47 | 0.908 (1.58) 30.86 | 0.886 (1.32) 29.53 | 0.857 (1.17)

BPFA 37.26 | 0.949 (4.50) 34.22 | 0.927 (2.40) 32.23 | 0.907 (1.72) 30.67 | 0.885 (1.45) 29.51 | 0.859 (1.27)
KSVD 38.05 | 0.956 (7.04) 34.45 | 0.930 (3.11) 32.41 | 0.907 (1.77) 30.86 | 0.881 (1.16) 29.55 | 0.852 (0.83)

TV(ANISO) 34.17 | 0.936 ( — ) 29.77 | 0.877 ( — ) 27.49 | 0.820 ( — ) 26.00 | 0.770 ( — ) 25.07 | 0.728 ( — )
TV(ISO) 34.18 | 0.936 ( — ) 29.77 | 0.877 ( — ) 27.50 | 0.822 ( — ) 26.01 | 0.773 ( — ) 25.12 | 0.734 ( — )

BASELINE 34.16 | 0.887 ( — ) 28.14 | 0.724 ( — ) 24.61 | 0.594 ( — ) 22.11 | 0.497 ( — ) 20.18 | 0.422 ( — )
GOLDHILL σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

IMLFM 35.72 | 0.935 (3.22) 32.70 | 0.881 (1.65) 31.12 | 0.838 (1.22) 30.03 | 0.799 (1.09) 29.15 | 0.764 (1.03)
MLFM 35.20 | 0.928 (3.20) 32.64 | 0.878 (1.58) 31.15 | 0.837 (1.24) 30.00 | 0.797 (1.09) 29.14 | 0.762 (1.03)

BPFA 34.73 | 0.924 (3.05) 32.17 | 0.875 (1.39) 30.87 | 0.833 (1.30) 29.89 | 0.790 (1.16) 29.09 | 0.762 (1.08)
KSVD 36.65 | 0.941 (6.78) 33.25 | 0.885 (2.49) 31.40 | 0.832 (1.25) 30.01 | 0.787 (0.77) 29.05 | 0.746 (0.53)

TV(ANISO) 34.73 | 0.908 ( — ) 31.43 | 0.833 ( — ) 29.74 | 0.776 ( — ) 28.61 | 0.732 ( — ) 27.79 | 0.696 ( — )
TV(ISO) 34.81 | 0.910 ( — ) 31.52 | 0.836 ( — ) 29.83 | 0.781 ( — ) 28.69 | 0.736 ( — ) 27.87 | 0.700 ( — )

BASELINE 34.16 | 0.897 ( — ) 28.14 | 0.727 ( — ) 24.61 | 0.577 ( — ) 22.11 | 0.461 ( — ) 20.18 | 0.373 ( — )
LENA σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

IMLFM 37.49 | 0.934 (2.39) 34.99 | 0.905 (1.53) 33.51 | 0.879 (1.25) 32.38 | 0.861 (1.12) 31.43 | 0.844 (1.06)
MLFM 37.36 | 0.931 (2.29) 35.07 | 0.905 (1.53) 33.58 | 0.880 (1.26) 32.42 | 0.862 (1.13) 31.40 | 0.843 (1.07)

BPFA 37.41 | 0.932 (2.56) 34.92 | 0.903 (1.73) 33.41 | 0.882 (1.45) 32.31 | 0.861 (1.25) 31.17 | 0.840 (1.13)
KSVD 38.26 | 0.937 (4.22) 35.38 | 0.905 (1.66) 33.68 | 0.879 (0.91) 32.40 | 0.856 (0.61) 31.30 | 0.832 (0.43)

TV(ANISO) 35.92 | 0.917 ( — ) 32.71 | 0.874 ( — ) 30.96 | 0.841 ( — ) 29.84 | 0.816 ( — ) 28.87 | 0.793 ( — )
TV(ISO) 35.95 | 0.917 ( — ) 32.78 | 0.874 ( — ) 31.04 | 0.843 ( — ) 29.93 | 0.818 ( — ) 28.98 | 0.796 ( — )

BASELINE 34.16 | 0.855 ( — ) 28.14 | 0.646 ( — ) 24.61 | 0.493 ( — ) 22.11 | 0.390 ( — ) 20.18 | 0.317 ( — )
PEPPERS σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

IMLFM 36.47 | 0.935 (2.30) 34.23 | 0.924 (1.46) 33.00 | 0.905 (1.23) 31.94 | 0.884 (1.12) 31.09 | 0.871 (1.05)
MLFM 35.97 | 0.931 (2.12) 34.28 | 0.926 (1.46) 33.01 | 0.905 (1.24) 31.99 | 0.885 (1.13) 31.09 | 0.869 (1.07)

BPFA 35.61 | 0.937 (2.33) 34.10 | 0.920 (1.64) 32.45 | 0.904 (1.38) 31.37 | 0.882 (1.23) 30.46 | 0.864 (1.11)
KSVD 37.72 | 0.949 (4.82) 34.20 | 0.923 (1.73) 32.16 | 0.900 (0.90) 30.80 | 0.877 (0.58) 29.64 | 0.855 (0.42)

TV(ANISO) 35.73 | 0.938 ( — ) 32.40 | 0.903 ( — ) 30.44 | 0.872 ( — ) 29.25 | 0.850 ( — ) 28.26 | 0.828 ( — )
TV(ISO) 35.85 | 0.938 ( — ) 32.56 | 0.905 ( — ) 30.59 | 0.875 ( — ) 29.42 | 0.853 ( — ) 28.40 | 0.832 ( — )

BASELINE 34.16 | 0.855 ( — ) 28.14 | 0.642 ( — ) 24.61 | 0.485 ( — ) 22.11 | 0.382 ( — ) 20.18 | 0.310 ( — )

iterations and the time cost is similar across all models.

We show the mean and variance of the predictive log-
likelihood for all models in Figure 3. Since the nonpara-
metric models are not a function of latent feature, we show
their performance as a straight line. We observe that the
performance for MLFM starts to decrease when K reaches
25 and its best performance is the same as the nonparamet-
ric iMLFM, which is not surprising. We also observe that
nonparametric model performance is ordered as BPFA <
nCRP < iMLFM. We believe that this improvement in per-
formance is a result of the increasing ability to model the
relationships between features in this sequence.

We also show some qualitative results for these models. In
Figure 2 we show the 0-1 feature assignment matrix for the
three nonparametric models. To the left we show the coun-
try of origin for the person associated with each row. In the
columns we show the most heavily used features and re-
order them for a better visualization. Since BPFA assumes
all the features are mutually independent, it has a harder
time exploiting the natural structure in the data. The nCRP
gives a better result since it learns a hierarchy of features
spread across countries and continents. However, since the
model uses a strict tree structure as shown on the RHS of

Figure 2, it may not be flexible enough to uncover all the
hierarchical correlations.

On the RHS of Figure 2 we also show the graph learned
by iMLFM, where the 13 significantly used features (and
the null state, denoted by a dark node) are displayed. The
entire graph looks like a tree when organized according to
transition probability as we have done, but there are some
differences. First, the structure is not a strict hierarchy.
For example, there are transitions from the null state to
the “leaves.” There are also transitions across “subtrees.”
Thus, we learn a graph structure that approximates a tree,
following the structure of the data, but allows for individu-
als not to adhere strictly to this (in this case because, e.g.,
there may have been some ancestor from another region).
This shows the flexibility of our Markov-structured model.

5.2. Image denoising

We also experiment using scalable inference for an image
denoising task, where we would like to recover the original
image from an image corrupted by white Gaussian noise.
We demonstrate results for four 512 × 512 images: ’Bar-
bara’, ’Goldhill’, ’Lena’, and ’Peppers’ (below in Figure
5). We extract 8 × 8 patches from the noise-corrupted im-
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Figure 4. (Left) A similarity-preserving 2-d embedded graph of the learned dictionary elements using their transition probabilities. We
show edges about a threshold, and the direction of an edge between two dictionary elements according to the higher transition probability.
(Right) Feedback maps for dictionary elements in various regions in the graph on the left.

ages using a single-pixel sliding window to scan the entire
image. This gives a total of 255,025 patches.

We compare with scalable BPFA (Sertoglu & Paisley,
2015), the non-probabilistic K-SVD model (Aharon et al.,
2006), and isotropic and anisotropic total variation (TV)
(Goldstein & Osher, 2009). We set η = 1/2552, λ =
1/10, α = 1, γ = 1, K = 256, and online parameters
|Ct| = 1000, t0 = 10, κ = 0.75. We truncated iMLFM
to 256 states. For all methods, we set σ using the method
from (Liu et al., 2013); for TV we found the regulariza-
tion parameter that resulted in this empirical noise variance.
For the stochastic algorithms, we train using 500 iterations,
which was enough for convergence; thus the number of
patches seen during inference was equivalent to two passes
through the entire dataset. To quantify the recovery qual-
ity, we show the peak signal-to-noise ratio (PNSR) and the
structured similarity (SSIM) performance measures (Wang
et al., 2004).

We show the result on various images using different noise
standard deviations in Table 1. As a baseline performance

Figure 5. The four images used in our experiments.

measure, we use the original noisy image. We can see that
iMLFM often performs better than BPFA and has results
comparable to K-SVD. In the images ’Barbara’ and ’Pep-
pers’, iMLFM performs better than K-SVD. We also show
the average number of features occupied by each patch in
Table 1. iMLFM is sparser than K-SVD when σ is small,
which is a matter of balancing predictive gain and extra cost
of growing paths in our greedy sparse coding step. For the
running time, MLFM takes about 4 minutes to converge,
which is similar to K-SVD and BPFA.

Finally, we show some qualitative result on the ’Barbara’
image in Figure 4. We show the graph learned by iMLFM
using a similarity-preserving 2-d embedding, where edges
having probabilities above a threshold are displayed be-
tween dictionary elements. Since iMLFM learns a di-
rected graph, we show the direction of edges according
to the larger transition probability between two elements.
For the ease of visualization, we only show the latent fea-
tures that contain stripes. On the LHS of Figure 4, we see
that the direction of stripes varies, but stripes with similar
directions have greater connectivity. The graph also has
a global structure as the similarity-preserving embedding
shows. For example, the direction of stripes changes from
the direction ‘\’ in the right area, to ‘|’ in the center area,
and to ‘/’ in the left area.

On the RHS of Figure 4, we display the feedback map of
dictionary elements in the six regions defined on the LHS.
As we can see, some groups of features give a local feed-
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back that has semantic meanings. For example, Region 1
(9 features) can be interpreted as the scarf; Region 3 (20
features) is the right leg; Region 4 (12 features) is the left
leg; Region 5 (5 features) is the tablecloth. Above we show
the ground truth image, the noisy input and the denoised
output for the corresponding experiment.

6. Conclusion
We presented a Markov latent feature model (MLFM)
using a simple sequential construction and connected
this construction to the requisite Markov property of the
stochastic process. The key is through the Markov ex-
changeability constraint, which allows for a mixing mea-
sure to be defined for easy variational inference. This pro-
cedure for constructing latent features models allows for
feature correlations to be learned from the data, and so in
a sense we have presented a “correlated IBP”-type model.
We showed two simple examples of a Markov latent feature
model, one parametric and one nonparametric, and scaled
inference to handle large datasets. Empirical results on a
genome analysis task and an image denoising task demon-
strates the advantage of correlated feature modeling.

Appendix
6.1. Proof of Proposition 2

First, note the q(Ci) is a function of Ẑi. The objective
function in Eq. (7) becomes

L(Zψ(i))) = L1(Zψ(i)) + L2(Zψ(i)), (9)

where

L1(Zψ(i)) = Eq[ln p(Zψ(i)|θθθ)]

L2(Zψ(i)) = Eq[ln p(Xi|Ci, Ẑi,W)] + f(Ẑi). (10)

Here f(Ẑi) = Eq[ln p(Ci)
q(Ci)

], by marginalizing out Ci. Note
that L2(Zψ(i)) can only take finite values, since there are
finite configurations for Ẑi. We only need to prove that
L1(Zψ(i)) cannot always be improved. We have

L1(Zψ(i)) =

τ(i)∑
j=τ(i−1)+1

Eq[ln θZj−1,Zj ]. (11)

Let L(1)
1 =

∑τ(i)−1
j=τ(i−1)+1 Eq[ln θZj−1,Zj ] be the cost of all

transitions execpt for the last one, and L(2)
1 be the rest part

of L1. Note that as the sequence grows, L(1)
1 is mono-

tonically decreasing, since θZj−1,Zj < 1. And L(2)
1 (the

cost of last transition plus a constant) can only take finite
values. Thus, L1 cannot monotonically increase through
greedy search.

6.2. Stochastic Variational Inference

We use stochastic variational inference (SVI) (Hoffman
et al., 2013) to scale up MLFM by using stochastic opti-
mization with natural gradients. Suppose N is large, the
objective function for W is

L(W) = ln p(W) +

N∑
i=1

Eq[ln p(Xi|Ci, Ẑi,W)]. (12)

At iteration t we sample a subset indexed by Ct and set the
objective

Lt(W) = ln p(W) +
N

|Ct|
∑
i∈Ct

E[ln p(Xi|Ci, Ẑi,W)].

(13)
Then we can perform an unbiased natural gradient decent
for W as follows:

Bt = ησ2 |Ct|
N

I +
∑
i∈Ct

Z̃i(µµµiµµµ
>
i + Σi)Z̃i,

W′
t = (

∑
i∈Ct Xiµµµ

>
i Z̃i)B

−1
t ,

W(t+1) = (1− ρt)W(t) + ρtW
′
t. (14)

Similarly, to update the conditional posterior of θθθ, we have
q(θθθ) =

∏K
k=0 q(θθθk), where q(θθθk) = Dir(ak). We update

a′j,j′ =
α

K + 1
+

N

|Ct|
∑
i∈Ct

τ(i)∑
i′=τ(i−1)+1

1{Zi′=j,Zi′+1=j′},

a
(t+1)
j,j′ = (1− ρt)a(t)

j,j′ + ρta
′
j,j′ , (15)

where ρt = (t+ t0)−κ, and κ ∈ (0.5, 1].
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